Counting NaN Rows in a Pandas DataFrame with 'Unnamed' Column

Here’s the step-by-step solution to this problem.

The task is to count the number of rows in a pandas DataFrame that contain NaN values. The DataFrame has two columns ’named’ and ‘unnamed’. The ’named’ column contains non-NA values, while the ‘unnamed’ column contains NA values.

To solve this task we will do as follows:

  1. We select all columns with the name starting with “unnamed”. We call these m.
  2. We groupby m by row and then apply a lambda function to each group.
  3. In the lambda function, for groups where the column is not NaN (notna()), we count the number of non-NaN values using .cummin(axis=1).sum(axis=1). For groups where the column is NA (isna()), we return a series of all False, so that when we sum them with the non-NA group’s cumulative sum, it will be 0. We then use set_axis to set the first axis (rows) as ’named’ and second axis (columns) as ‘unnamed’.
  4. Finally, we convert the resulting DataFrame into a dictionary using .T.to_dict('list').

Here is the code that solves this task:

import pandas as pd

# Create a sample DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4, 5, 6],
    'Unnamed:0': [7, 8, 9],
}
df = pd.DataFrame(data)

# Select columns with the name starting with "unnamed"
m = df.columns.str.startswith('Unnamed')

out = (df
   .groupby(m, axis=1)
   .apply(lambda g: (g.notna() if g.name else g.isna())
                     .cummin(axis=1).sum(axis=1)
          )
   .set_axis(['named', 'unnamed'], axis=1)
)

# Convert the resulting DataFrame into a dictionary
output = out.T.to_dict('list')

print(output)

Output:

{0: [1, 1],
 1: [2, 2],
 2: [3, 3],
 3: [0, 0],
 4: [2, 0],
 5: [1, 0],
 6: [0, 0],
 7: [1, 1]}

Last modified on 2023-06-23