Interactive Plot with Dropdown Menus using Plotly in Python

Introduction

This example demonstrates how to create an interactive plot with dropdown menus using Plotly in Python. The plot displays two lines for each unique value of stat_type in the dataset.

Requirements

  • Python 3.x
  • Plotly library (pip install plotly)
  • pandas library (pip install pandas)

Code Explanation

The code begins by importing necessary libraries and creating a sample dataset. It then processes this data to organize it into separate dataframes for each unique value of stat_type.

Next, the code uses these dataframes to create two scatter plots: one for each sub_id across dates. These plots are added to a figure using Plotly.

To add dropdown menus to the plot, we define a list of buttons, where each button corresponds to a specific dataframe. We then update the layout of this figure with these buttons.

Finally, we display this interactive plot using fig.show().

Step-by-Step Solution

  1. Import Libraries and Load Data

import pandas as pd import plotly.graph_objects as go


2.  **Create Sample Dataset and Process It**

    ```python
dfi = pd.DataFrame({
    'date': ['2020-01-01', '2020-02-01', '2020-03-01'],
    'sub_id': [1233, 1233, 3424],
    'stat_type': ['link_clicks', 'transaction', 'customer_signups'],
    'value': [12, 50, 9]
})

# change some types
dfi['date'] = pd.to_datetime(dfi['date'])
dfi['sub_id'] = dfi['sub_id'].astype(str)
  1. Organize Dataframes by Stat_Type

groups = dfi[‘stat_type’].unique().tolist() dfs = {} for g in groups: dfs[str(g)] = dfi[dfi[‘stat_type’] == g]


4.  **Create Scatter Plots for Each DataFrame**

    ```python
dfp = {}
for df in dfs.values():
    dfp[df.name] = df.pivot(index='date', columns='sub_id', values='value')
  1. Define Dropdown Buttons and Update Figure Layout

buttons = [] updatemenu = [] your_menu = dict() buttons.append(dict(method=‘restyle’, label=df.name, visible=True, args=[{‘y’:[dfp[df.name][‘1233’].values, dfp[df.name][‘3424’].values], ‘x’:[dfp[df.name].index], ’type’:‘scatter’}], ))

updatemenu.append(your_menu) updatemenu[0][‘buttons’] = buttons updatemenu[0][‘direction’]=‘down’ updatemenu[0][‘showactive’]=True

fig.update_layout(showlegend=False, updatemenus=updatemenu)


6.  **Add Annotations and Display Interactive Plot**

    ```python
fig.update_layout(
    annotations=[
        go.layout.Annotation(text="<b>stat_type:</b>",
                             x=-0.3, xref="paper",
                             y=1.1, yref="paper",
                             align="left", showarrow=False),
                          ]
)
  1. Show the Interactive Plot

fig.show()


### Output

The code generates an interactive plot where you can select a stat_type from the dropdown menu and view corresponding sub_id data points over time.

When you run this example, it will display an interactive plot in your web browser or IDE.

Last modified on 2023-10-31