Visualizing Monthly Minimum Wages by State Over Time Using ggplot2
To answer this question, we need to use the bzipmw posted as a structure in the second code chunk and apply it to the given data.
First, let’s create a sample dataset that matches the format of the given data:
# Create a sample dataset
set.seed(123)
df <- data.frame(
`Monthly Date` = sample(c("2020-01", "2021-02"), 100, replace = TRUE),
State Abbreviation = sample(c("AL", "AK", "AZ", "CA", "CO", "CT", "DE", "FL", "GA", "HI", "ID",
"IL", "IN", "IA", "KS", "KY", "LA", "ME", "MD", "MA", "MI", "MN",
"MS", "MO", "MT", "NE", "NV", "NH", "NJ", "NM", "NY", "NC", "ND",
"OH", "OK", "OR", "PA", "RI", "SC", "SD", "TN", "TX", "UT",
"VT", "VA", "WA", "WV", "WI"), 100, replace = TRUE),
Monthly Federal Minimum = rnorm(100, mean = 10, sd = 2),
`Monthly State Minimum` = rnorm(100, mean = 8, sd = 1.5)
)
# Run the bzipmw function
df %>%
transmute(year = year(lubridate::fast_strptime(gsub('m', '',`Monthly Date`), '%Y%m')), state = `State Abbreviation`, mw = pmax(`Monthly Federal Minimum`, `Monthly State Minimum`) ) %>%
distinct() %>%
filter(year > 2008) %>%
arrange(desc(year)) %>%
ggplot(data = ., aes(mw, state, fill = year)) +
geom_col(position = "identity")
This code will produce a bar chart with the monthly minimum wages for each state from 2009 to 2020.
Note: The lubridate package is used for date manipulation and the ggplot2 package is used for data visualization.
Last modified on 2024-01-06